In vitro study to simulate the intracardiac magnetohydrodynamic effect.
نویسندگان
چکیده
PURPOSE Blood flow causes induced voltages via the magnetohydrodynamic (MHD) effect distorting electrograms (EGMs) made during magnetic resonance imaging. To investigate the MHD effect in this context MHD voltages occurring inside the human heart were simulated in an in vitro model system inside a 1.5 T MR system. METHODS The model was developed to produce MHD signals similar to those produced by intracardiac flow and to acquire them using standard clinical equipment. Additionally, a new approach to estimate MHD distortions on intracardiac electrograms is proposed based on the analytical calculation of the MHD signal from MR phase contrast data. RESULTS The recorded MHD signals were similar in magnitude to intracardiac signals that would be measured by an electrogram of the left ventricle. The dependency of MHD signals on magnetic field strength and electrode separation was well reflected by an analytical model. MHD signals reconstructed from MR flow data were in excellent agreement with the MHD signal measured by clinical equipment. CONCLUSION The in vitro model allows investigation of MHD effects on intracardiac electrograms. A phase contrast MR scan was successfully applied to characterize and estimate the MHD distortion on intracardiac signals allowing correction of these effects.
منابع مشابه
Effects of variations in magnetic Reynolds number on magnetic field distribution in electrically conducting fluid under magnetohydrodynamic natural convection
In this study the effect of magnetic Reynolds number variation on magnetic distribution of natural convection heat transfer in an enclosure is numerically investigated. The geometry is a two dimensional enclosure which the left wall is hot, the right wall is cold and the top and bottom walls are adiabatic. Fluid is molten sodium with Pr=0.01 and natural convection heat transfer for Rayleigh num...
متن کاملAnalytical and numerical investigation of heat and mass transfer effects on magnetohydrodynamic natural convective flow past a vertical porous plate
The aim of this investigation is to study the effect of hall current on an unsteady natural convective flow of a viscous, incompressible, electrically conducting optically thick radiating fluid past a vertical porous plate in the presence of a uniform transverse magnetic field. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. Analytical a...
متن کاملIntracardiac Infection at the Tip of Hemodialysis Catheter: Life threatening Morbidity
Endocarditis and intracardiac infection have been increased recently especially in dialysis dependent renal failure patients. This is usually intractable infection to broad spectrum Antibiotic therapy and in most cases surgical intervention was necessary. We have presented 45 years old man with intracardiac infection at the tip of dialysis catheter that after catheter removal intracardiac infec...
متن کاملMagnetohydrodynamic mixed convection effects on the removal process of fluid particles from an open cavity in a horizontal channel
This paper presents the results of a numerical study on the heat transfer performance and the removal process of fluid particles under the influence of magnetohydrodynamic mixed convection in a horizontal channel with an open cavity. The bottom wall of the cavity is heated at a constant temperature (Th) while the top wall of the channel is maintained at a relatively low temperature (Tc). Air wi...
متن کاملA Paired Quasi-linearization on Magnetohydrodynamic Flow and Heat Transfer of Casson Nanofluid with Hall Effects
Present study explores the effect of Hall current, non-linear radiation, irregular heat source/sink on magnetohydrodynamic flow of Casson nanofluid past a nonlinear stretching sheet. Viscous and Joule dissipation are incorporated in the energy equation. An accurate numerical solution of highly nonlinear partial differential equations, describing the flow, heat and mass transfer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 74 3 شماره
صفحات -
تاریخ انتشار 2015